Machine Learning
Chapter 5. Credibility



5 Credibility:

Evaluating what’s been learned

S

*

Issues: training, testing, tuning

Predicting performance: confidence limits
Holdout, cross-validation, bootstrap
Comparing schemes: the t-test

Predicting probabilities: loss functions
Cost-sensitive measures

Evaluating numeric prediction

The Minimum Description Length principle
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&#  Evaluation: the key to
SUCCesSsS

4

®

» How predictive is the model we learned?

» Error on the training data is not a good
Indicator of performance on future data

d Otherwise 1-NN would be the optimum
classifier!

* Simple solution that can be used If lots of
(labeled) data is available:
 Split data into training and test set

** However: (labeled) data is usually limited
d More sophisticated technigues need to be used
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Issues 1IN evaluation

¢ Statistical reliability of estimated differences
In performance (— significance tests)

¢ Choice of performance measure:
d Number of correct classifications
d Accuracy of probability estimates
 Error in numeric predictions

¢ Costs assigned to different types of errors
1 Many practical applications involve costs



Training and testing |

* Natural performance measure for
classification problems: error rate
O Swuccess: instance’s class is predicted correctly
d Error. instance’s class is predicted incorrectly

O Error rate: proportion of errors made over the
whole set of instances

o Resubstitution error: error rate obtained
from training data

¢ Resubstitution error is (hopelessly)
optimistic!



Training and testing I

*» Test set. independent instances that have
played no part in formation of classifier
d Assumption: both training data and test data

are representative samples of the underlying
problem

* Test and training data may differ in nature

1 Example: classifiers built using customer data
from two different towns Aand B

= To estimate performance of classifier from town A in
completely new town, test it on data from B



Note on parameter tuning

* It is important that the test data is not
used /n any way to create the classifier

¢ Some learning schemes operate in two
stages:
 Stage 1: build the basic structure
 Stage 2: optimize parameter settings

¢ The test data can’t be used for parameter
tuning!

¢ Proper procedure uses three sets: training
data, validation data, and test data
 Validation data is used to optimize parameters



Making the most of the
data

*» Once evaluation is complete, all the data
can be used to build the final classifier

*» Generally, the larger the training data the
better the classifier (but returns diminish)

** The larger the test data the more accurate
the error estimate

s Holdout procedure: method of splitting
original data into training and test set

dDilemma: ideally both training set and test set
should be large!




f Predicting performance

» Assume the estimated error rate 1s 25%.
How close is this to the true error rate?

1 Depends on the amount of test data

¢ Prediction is just like tossing a (biased!)
coin
d “Head” is a “success”, “tail” is an “error”

¢ In statistics, a succession of independent
events like this is called a Bernoulli process

1 Statistical theory provides us with confidence
Intervals for the true underlying proportion



Confidence intervals

“* We can say: p lies within a certain specified
Interval with a certain specified confidence

*» Example: §=750 successes in A=1000 trials
 Estimated success rate: 75%

d How close is this to true success rate p?
= Answer: with 80% confidence pe[73.2,76.7]

“ Another example: S=75 and A=100
 Estimated success rate: 75%
d With 80% confidence p<[69.1,80.1]
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Mean and variance

s+ Mean and variance for a Bernoulli trial:

P, p (1-p)
¢ Expected success rate =5/N

* Mean and variance for 7: p, p (1-p)/N

¢ For large enough A, £ follows a Normal
distribution

“ ¢c% confidence interval [-z< X< 2] for
random variable with 0 mean is given by:

Prl-z< X <z]=c
“ With a symmetric distribution:
Prl-z< X <£2]=1-2xPr[X > 7]
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Confidence limits

+» Confidence limits for the normal distribution with O

mean and a variance of 1. [pxs 7 2
0.1% 3.09

A 0.5% | 2.58

1% 2.33

5% 1.65

10% 1.28

20% 0.84

-1 0 1 165 40% 0.25

s Thus:

Pr[-1.65< X <1.65] =90%

s+ To use this we have to reduce our random variable
fto have 0 mean and unit variance
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Transforming

«» Transformed value for f: f-p
Jp@-p)/N

(i.e. subtract the mean and divide by the standard deviation)

¢ Resulting equation:

Pr{—sz {_p/Ngz}:c
“ Solving for p: P=P)

2 2 2 2
p= erZJ_rz\/f—erz2 14 °
2N N N 4N N
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Examples

s = 75%, N= 1000, ¢ = 80% (so that z =1.28):
p[0.732,0.767]
= 75%, N= 100, ¢ = 80% (so that 7z =1.28):

D €[0.691,0.801]

** Note that normal distribution assumption is only
valid for large NV (i.e. N> 100)

= 75%, N=10, ¢ = 80% (so that z =1.28):
p €[0.549,0.881]

(should be taken with a grain of salt)
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&  Holdout estimation

» What to do if the amount of data iIs limited?

*» The holdout method reserves a certain
amount for testing and uses the remainder
for training

1 Usually: one third for testing, the rest for
training

*» Problem: the samples might not be
representative

1 Example: class might be missing in the test data

s Advanced version uses stratification

1 Ensures that each class is represented with
approximately equal proportions in both subsets
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Repeated holdout method

*» Holdout estimate can be made more
reliable by repeating the process with
different subsamples

 In each iteration, a certain proportion is
randomly selected for training (possibly with
stratificiation)

d The error rates on the different iterations are
averaged to yield an overall error rate

* This is called the repeated holdout method

 Still not optimum: the different test sets
overlap
d Can we prevent overlapping?
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Cross-validation

¢ Cross-valldation avoids overlapping test sets
L First step: split data into & subsets of equal size

d Second step: use each subset in turn for testing,
the remainder for training

»» Called k-fold cross-validation

» Often the subsets are stratified before the
cross-validation is performed

* The error estimates are averaged to yield an
overall error estimate
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More on cross-validation

¢ Standard method for evaluation: stratified
ten-fold cross-validation
“ Why ten?
1 Extensive experiments have shown that this is
the best choice to get an accurate estimate
 There is also some theoretical evidence for this

¢+ Stratification reduces the estimate’s variance
*» Even better: repeated stratified cross-

validation

O E.g. ten-fold cross-validation is repeated ten
times and results are averaged (reduces the
variance)
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Leave-One-Out Ccross-
validation

Leave-One-Out:
a particular form of cross-validation:

d Set number of folds to number of training
Instances

4 l.e., for ntraining instances, build classifier n
times

Makes best use of the data
Involves no random subsampling

Very computationally expensive
1 (exception: NN)

19



L eave-One-Out-CV and
stratification

*» Disadvantage of Leave-One-Out-CV:
stratification is not possible
It guarantees a non-stratified sample because
there is only one instance in the test set!
“ Extreme example: random dataset split
equally into two classes
 Best inducer predicts majority class
d 50% accuracy on fresh data
 Leave-One-Out-CV estimate is 100% error!
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The bootstrap

*» CV uses sampling without replacement
The same instance, once selected, can not be
selected again for a particular training/test set
** The bootstrap uses sampling with
replacement to form the training set

dSample a dataset of /7 instances 77 times W/th
replacement to form a new dataset oy gt St Ao Availbie
of ninstances

L Use this data as the training set

L Use the instances from the original
dataset that don’t occur in the new
training set for testing

A " " ’."-rai-.f-'. -
Sty 2 Strand Boot Strap
G E mmo 3‘9‘95



The 0.632 bootstrap

*» Also called the 0.632 bootstrap

A particular instance has a probability of 1-1/n
of not being picked

L Thus its probability of ending up in the test

data Is: 1\
(1—nj ~e 1 =0.368

 This means the training data will contain
approximately 63.2% of the instances
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Estimating error
with the bootstrap

» The error estimate on the test data will be
very pessimistic

 Trained on just ~63% of the instances

*» Therefore, combine it with the
resubstitution error:

err =0.632- €. instances +0-368-€

** The resubstitution error gets less weight
than the error on the test data

** Repeat process several times with different
replacement samples; average the results

training instances
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More on the bootstrap

** Probably the best way of estimating
nerformance for very small datasets

»» However, it has some problems
(d Consider the random dataset from above

A perfect memorizer will achieve
0% resubstitution error and
~50% error on test data

d Bootstrap estimate for this classifier:
err =0.632-50% + 0.368-0% =31.6%

d True expected error: 50%
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4* Comparing data mining
schemes

¢ Frequent question: which of two learning
schemes performs better?

» Note: this is domain dependent!

» Obvious way: compare 10-fold CV
estimates

** Problem: variance in estimate
¢ Variance can be reduced using repeated CV

«» However, we still don’'t know whether the
results are reliable
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Significance tests

¢ Significance tests tell us how confident we
can be that there really is a difference

“ Null hypothesis. there is no “real” difference
» Alternative hypothesis. there is a difference

A significance test measures how much
evidence there is in favor of rejecting the
null hypothesis

*»Let’s say we are using 10-fold CV

*» Question: do the two means of the 10 CV
estimates differ significantly?
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Paired t-test

o Student’s t-test tells whether the means of
two samples are significantly different

*» Take individual samples using cross-
validation

*» Use a paired t-test because the individual
samples are paired
d The same CV is applied twice

William Gosset
Born: 1876 in Canterbury; Died: 1937 in Beaconsfield, England

Obtained a post as a chemist in the Guinness brewery in Dublin in
1899. Invented the t-test to handle small samples for quality
control in brewing. Wrote under the name "'Student™".
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Distribution of the means

X; X, ... xp,and y, v, ... y, are the 2k samples for a A
fold CV

m,and m, are the means

With enough samples, the mean of a set of
Independent samples is normally distributed

Estimated variances of the means are
c,’/k and c,%/k

If 1, and p, are the true means then My — 4 My — 4y

Jog 1k o, Ik
are approximately normally distributed with
mean O, variance 1
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Student’s distribution

** With small samples (A < 100) the mean
follows Student’s distribution with k-1
degrees of freedom

s+ Confidence limits:

9O degrees of freedom normal distribution

Prix> Z] V4 Prix> Z] V4
0.1% 4.30 0.1% 3.09
0.5% 3.25 0.5% 2.58

1% 2.82 1% 2.33
5% 1.83 5% 1.65
10% 1.38 10% 1.28
20% 0.88 20% 0.84
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Distribution of the
differences

“ Let my=m,—m,
% The difference of the means (/7)) also has

a Student’s distribution with A-1 degrees of
freedom

% Let 642 be the variance of the difference

% The standardized version of m,is called the

f-statistic:
My

o Ik

t =

“* We use ¢ to perform the t-test
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Performing the test

Fix a significance level a

 |If a difference is significant at the 0% level,
there is a (100-a)% chance that there really is
a difference

Divide the significance level by two
because the test is two-tailed

e |.e. the true difference can be +ve or —ve

Look up the value for z that corresponds
to a/2

If £t <—zor t> zthen the difference Is
significant
 |.e. the null hypothesis can be rejected
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Unpaired observations

» If the CV estimates are from different
randomizations, they are no longer paired

“ (or maybe we used k -fold CV for one
scheme, and y -fold CV for the other one)

»» Then we have to use an un paired t-test
with min(4, ) — 1 degrees of freedom

» The fstatistic becomes:
m,—m,

o
W \/x+ff_y




Interpreting the result

¢ All our cross-validation estimates are based
on the same dataset

% Samples are not independent

*» Should really use a different dataset sample
for each of the k& estimates used in the test
to judge performance across different
training sets

¢ Or, use heuristic test, e.q. corrected
resampled t-test
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& Predicting probabilities

4

» Performance measure so far: success rate
» Also called 0-1 /oss function:
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Z O If prediction Is correct
11f prediction is incorrect

4

L)

» Most classifiers produces class probabilities

» Depending on the application, we might
want to check the accuracy of the
probabllity estimates

¢ 0-1 loss Is not the right thing to use In
those cases
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Quadratic loss function

p. ... p,are probability estimates for an instance
c 1S the index of the instance’s actual class

a, ... a,=0, except for a.which is 1

Quadratic loss is: Z(pj _aj)2 - Z pJ? +(1- pc)2
J

J#C
Want to minimize E{Z(pj —aj)z}
j

Can show that this is minimized when p;= p/, the
true probabillities
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Informational loss
function

% The informational loss function is —log(p,),
where c¢is the index of the instance’s actual class

“* Number of bits required to communicate the actual
class

“ Let p,” ... p, be the true class probabilities
“* Then the expected value for the loss function is:

—p, log, p,—...— p 109, p,

< Justification: minimized when p; = p;/
» Difficulty: zero-frequency problem
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Discussion

s Which loss function to choose?
d Both encourage honesty

d Quadratic loss function takes into account all
class probability estimates for an instance

d Informational loss focuses only on the
probability estimate for the actual class

d Quadratic loss is bounded: . ,
it can never exceed 2 + Z,: Pj

d Informational loss can be infinite

+» Informational loss is related to VDL
principle [iater]
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Counting the cost

¢ In practice, different types of classification
errors often incur different costs
¢ Examples:
A Terrorist profiling
= “Not a terrorist” correct 99.99% of the time
1 Loan decisions
 Oil-slick detection
 Fault diagnosis
d Promotional mailing
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Counting the cost

* The confusion matrix.

Predicted class
Yes No
Actual Yes True positive | False negative
class No False positive | True negative

** There many other types of cost!
L E.qg.: cost of collecting training data



Lift charts

4

®

» In practice, costs are rarely known

» Decisions are usually made by comparing
possible scenarios

s Example: promotional mailout to 1,000,000
households

 Mail to all; 0.1% respond (1000)

« Data mining tool identifies subset of 100,000

most promising, 0.4% of these respond (400)
40% of responses for 10% of cost may pay off

e ldentify subset of 400,000 most promising,
0.2% respond (800)

“* A /ift chart allows a visual comparison

L)
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Generating a lift chart

¢ Sort instances according to predicted probability of
being positive:

Predicted probability  Actual class

1 0.95 Yes
2 0.93 Yes
3 0.93 No
4 0.88 Yes

% X axis Is sample size
yaxis is number of true positives
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A hypothetical lift chart

1000
800
Number of
respondents
600
400
200
0 ] [
0 20% 40% 60% 80% 100%
/ Sample size
40% of responses 80% of responses
for 10% of cost for 40% of cost
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ROC curves

s ROC curves are similar to lift charts
 Stands for “receiver operating characteristic”

1 Used in signal detection to show tradeoff
between hit rate and false alarm rate over
noisy channel

¢+ Differences to lift chart:

) axis shows percentage of true positives In
sample rather than absolute number

 xaxis shows percentage of false positives in
sample rather than sample size
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A sample ROC curve

100%

80%
True

positives
60%

40%

20%

0 20% 40% 60% 80% 100%
False positives

% Jagged curve—one set of test data

*» Smooth curve—use cross-validation 44



Cross-validation and ROC
curves

*» Simple method of getting a ROC curve
using cross-validation:

1 Collect probabillities for instances in test folds
 Sort instances according to probabilities

¢ This method is implemented in WEKA
** However, this is just one possibility

d The method described in the book generates
an ROC curve for each fold and averages them
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ROC curves for two
schemes

100%
B
80%
True
positives y
60%
A
40%
20%
0
0 20% 40% 60% 80% 100%

False positives

% For a small, focused sample, use method A
% For a larger one, use method B
* In between, choose between A and B with appropriate probabilities 46



The convex hull

* Given two learning schemes we can
achieve any point on the convex hull!

% TP and FP rates for scheme 1: 7, and 7,
% TP and FP rates for scheme 2: £, and 7,

*» If scheme 1 is used to predict 100xqg % of
the cases and scheme 2 for the rest, then
TP rate for combined scheme:
gx t+(1-9) x 1,
d FP rate for combined scheme:
g x f+(1-g) x 1,
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Cost-sensitive learning

“*Most learning schemes do not perform cost-
sensitive learning

They generate the same classifier no matter
what costs are assigned to the different classes

U Example: standard decision tree learner

“+ Simple methods for cost-sensitive learning:
L Resampling of instances according to costs
dWeighting of instances according to costs

+*» Some schemes can take costs into account
by varying a parameter, e.g. naive Bayes
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Measures 1n iInformation
retrieval

Percentage of retrieved documents that are
relevant: precision=TP/(TP+FP)

Percentage of relevant documents that are
returned: recall =TP/(TP+FN)

Precision/recall curves have hyperbolic shape

Summary measures: average precision at 20%o,
50% and 80% recall (zhree-point average recall)

F-measure=(2xrecallxprecision)/(recall+precision)
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Summary of measures

Lift chart

ROC
curve

Recall-
precision
curve

Domain Plot Explanation
Marketing TP TP
Subset (TP+FP)/(TP+FP+TN+FN)
size
Communications | TP rate TP/(TP+FN)
FP rate FP/(FP+TN)
Information Recall TP/(TP+FN)
retrieval Precision | TP/(TP+FP)

50



»éf Evaluating numeric
prediction

¢+ Same strategies: independent test set,
cross-validation, significance tests, etc.

¢ Difference: error measures

“ Actual target values: a, a, ...a,

“*Predicted target values: p, p, ... p,

“*Most popular measure: mean-squared error

(pl_a1)2 +'"+(pn _an)2
n

dEasy to manipulate mathematically
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Other measures

* The root mean-squared error

J(pl_al)z_l_""l'(pn _an)2

N

»The mean absolute error is less sensitive to
outliers than the mean-squared error:

| P —a |+ +| Py —a, |
N

“* Sometimes relative error values are more
appropriate (e.g. 10% for an error of 50
when predicting 500)
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Improvement on the mean

“ How much does the scheme improve on
simply predicting the average?

“* The relative squared erroris (aistheaverage):

(pl_a1)2 +"'+(pn _an)2
(@-a) +..+(@-a,)’

s The relative absolute errors:

| P —a | +..+| p,—a, ]|
|a_a1|+...+|a_an|
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Correlation coefficient

» Measures the statistical correlation between
the predicted values and the actual values

Spa
N
Z(pi_p)(ai_a) Z(pi—‘p)z Z:(ai_a)2
Spa = n-1 > = n-1 oA = n-1

¢ Scale independent, between -1 and +1
“+ Good performance leads to large values!
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Which measure?

+* Best to look at all of them

+» Often It doesn’t matter

** Example:

Root mean-squared error
Mean absolute error
Root rel squared error
Relative absolute error
Correlation coefficient

A B C D
67.8 91.7 63.3 57.4
41.3 38.5 33.4 29.2
42.2% |57.2% |39.4% 35.8%
43.1% [40.1% |34.8% 30.4%
0.88 0.88 0.89 0.91
% D best

+» C second-best
“ A, B arguable
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&  The MDL principle

** MDL stands for minimum description length

“* The description length is defined as:

space required to describe a theory
+

space required to describe the theory's mistakes

**In our case the theory is the classifier and
the mistakes are the errors on the training
data

+* Aim: we seek a classifier with minimal DL
“*MDL principle is a model selection criterion
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Model selection criteria

* Model selection criteria attempt to find a
good compromise between:
 The complexity of a model
e |ts prediction accuracy on the training data
* Reasoning: a good model is a simple
model that achieves high accuracy on the
given data

» Also known as Occam’s Razor -
the best theory is the smallest one
that describes all the facts

William of Ockham, born in the village of Ockham in Surrey _
(England) about 1285, was the most influential philosopher of &
the 14th century and a controversial theologian.




Elegance vs. errors

* Theory 1: very simple, elegant theory that
explains the data almost perfectly

¢ Theory 2: significantly more complex
theory that reproduces the data without
mistakes

Theory 1 is probably preferable

Classical example: Kepler’s three laws on
planetary motion

 Less accurate than Copernicus’s latest
refinement of the Ptolemaic theory of epicycles

® N/
0’0 0’0
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MDL and compression

“*MDL principle relates to data compression:

The best theory is the one that compresses the
data the most

1.e. to compress a dataset we generate a model
and then store the model and its mistakes

‘*We need to compute
(a) size of the model, and
(b) space needed to encode the errors

¢ (b) easy: use the informational loss function
“*(a) need a method to encode the model

59



MDL and Bayes’s theorem

e

*

_[T]="length” of the theory

_[E|T]=training set encoded wrt the theory

Description length= L[T] + L[E|T]

» Bayes'’s theorem gives a posteriori
probability of a theory given the data:

PI{T | E] = PrlE|T]Pr[T]

PriE]
¢ Equivalent to:
—logPr[T |E]=—logPr[E |T]-logPr[T ]+ logPr[E]

~
constant

Y

*

Y

*

AR
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MDL and MAP

MAP stands for maximum a posteriori probability

Finding the MAP theory corresponds to finding the
MDL theory

Difficult bit in applying the MAP principle:
determining the prior probability Pr[T] of the
theory

Corresponds to difficult part in applying the MDL
principle: coding scheme for the theory

l.e. if we know a priori that a particular theory is
more likely we need less bits to encode it
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Discussion of MDL
principle

Advantage: makes full use of the training data
when selecting a model

Disadvantage 1: appropriate coding scheme/prior
probabilities for theories are crucial

Disadvantage 2: no guarantee that the MDL theory
IS the one which minimizes the expected error

Note: Occam’s Razor i1s an axiom!

Epicurus’s principle of multiple explanations. keep
all theories that are consistent with the data



Bayesian model averaging

o0

Reflects Epicurus’s principle: all theories are used
for prediction weighted according to P[T|E]

Let / be a new instance whose class we must
predict

Let C be the random variable denoting the class
Then BMA gives the probability of C given

Q /

d training data £

1 possible theories 7;

Pr[C|1,E]=) Pr[C|1,T,]Pr[T, | E]
J

~
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MDL and clustering

s Description length of theory:
bits needed to encode the clusters

 e.g. cluster centers
¢ Description length of data given theory:

encode cluster membership and position
relative to cluster

1 e.g. distance to cluster center

*» Works if coding scheme uses less code space
for small numbers than for large ones

* With nominal attributes, must communicate
probability distributions for each cluster
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